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Abstract

We present a methodology for creating geometrically exact unstructured meshes comprised of rational Bézier tetrahedra. The
novel contributions are two fold. First, we present criteria for creating a compatible preliminary linear tetrahedral mesh from
a NURBS or T-spline surface. We then present a surface reconstruction methodology capable of exactly recovering the CAD
geometry.
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1. Introduction

Higher-order, curvilinear mesh generation has been a subject of much research interest in recent years [2,3,5,7,8,
11]. Generally speaking, most of the prior work employs some variation of the same general approach, namely:

1. Generate a suitable preliminary linear mesh.
2. Insert higher order nodes on the linear elements.
3. Reconstruct the surface geometry through manipulation of the higher order nodes.
4. Perform some smoothing operation to redistibute internal nodes, and thereby improve mesh quality.

In this work, we seek to improve upon this prior work by drawing inspiration from both the higher-order meshing
community, and from isogeometric analysis (IGA). We realize this goal by utilizing rational Bézier tetrahedra to
create geometrically exact meshes of CAD models described by NURBS or T-spline surfaces. Our approach then,
has three main advantages. (1) We are able to create geometrically exact meshes of CAD geometries. (2) Our
approach employs variational projection for surface fitting while most existing mesh generation approaches employ
point interpolation. Consequently, our approach is not subject to the issue of instability, including the presence of
spurious surface oscillations, that may result from a poor choice of interpolation node [10]. (3) Our approach employs
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a Bernstein–Bézier parametrization of the surface geometry as opposed to a Lagrange parametrization. This allows
us to define necessary conditions for ensuring higher-order mesh quality, as seen in our earlier work [4].

The rest of this paper will focus primarily demonstrating the key aspects of our meshing technique by example.
First, we will present the criteria for generating a compatible linear mesh. We then present our methodology for
geometrically exact surface reconstructions. The paper concludes with some outlook for future directions of the
method.

2. Generation of a Compatible Linear Mesh

Since we plan to recover CAD geometries through surface reconstruction, we impose several constraints on both
the CAD surface and the preliminary linear surface mesh. First, let the CAD surface be comprised of any number of
non-intersecting, orientable, closed manifolds without boundary. For each manifold, S, we require that the manifold
be explicitly parameterized by a watertight NURBS or T-spline surface. We note that we are able to decompose a
NURBS or T-spline surface into a collection of Bézier elements via the process of Bézier extraction [1,6]. That is, for
each manifold, we can define a set of Bézier elements Ωe such that:

S =

n⋃
e=1

Ωe (1)

and for each Bézier element there exists a rational Bernstein-Bézier mapping ~xe : Ω̂quad → Ωe. Here, Ω̂quad denotes
the unit reference quadrilateral Ω̂quad = (0, 1)2. Thus the extracted elements provide an explicit, bijective, watertight
parameterization of S.

Once we have ensured that the CAD surface is valid, we must generate a suitable linear mesh of the surface. We
call such a surface mesh compatible, and the requirements for a compatible mesh are roughly stated as follows:

Requirement 1: Each vertex in the mesh is a point on the surface S.
Requirement 2: Each triangle in the mesh belongs to a unique Bézier element.

To make these requirements precise, we denote a linear surface mesh asM = {V,P}, whereV is the set of vertices in
the mesh, and P is a triangulation of the vertices inV. Requirement #1, mathematically speaking, requires that V ∈ S
for every vertex V ∈ V. Requirement #2, on the other hand, requires that each vertex for a given triangle pe

k ∈ P

must lie on a unique Bézier element Ωe ⊂ S. To illustrate this second requirement, Figure 1a shows an example
of a compatible mesh, while Figure 1b shows an incompatible mesh, with the incompatible polygons highlighted in
red. The motivation for this second requirement will become clear in Section 3, as it ensures that we will be able to
perform Bézier projection in order to recover the exact geometry.

(a) (b) (c) b

Fig. 1: a) An open cylindrical surface. (b)A valid and (c) an invalid linear mesh. Bézier element boundaries are shown in bold, and invalid triangles
are shown in red.
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We must mention that there is one caveat on the precise requirements on the CAD surfaces that we have listed
above. Consider the cylindrical surface shown in Figure 1a. As it is, this surface does not satisfy our criteria because
it is open at the ends, and is therefore not a manifold without boundary. However, for practical implementation, we
permit the closure of open surfaces using a trimmed surface, provided that the trimmed surface is planar. The rea-
soning behind this caveat comes directly from the surface reconstruction constraints. If a surface is planar, we are not
required to perform geometry reconstruction, and therefore do not require that the surface be explicitly parameterized
by Bézier elements. With a suitable surface mesh generated, it then remains to generate a linear mesh of the volume.
Figure 3a shows a cut view of the volume mesh of the cylinder from Figure 1b.

3. Surface Reconstruction

With a suitable linear mesh generated, it is trivial to degree elevate the mesh by inserting higher order control
points, as shown in Figure 3b. It remains then, to update the newly generated control nets so that the mesh surface
exactly matches the CAD surface. First, recall that the faces of Bézier tetrahedra are themselves Bézier triangles.
Thus to perform surface reconstruction, we desire to update the triangular faces lying on the geometry boundary so
that they exactly match the CAD surface. To achieve this, we turn to Bézier projection, another important tool from
isogeometric analysis [9]. However, before we describe the exact process for performing surface reconstruction, we
first take a moment to introduce some useful notation. Figure 2 serves to illustrate the notation introduced here.

Recall from Section 2 that each triangle in the surface mesh belongs to a unique Bézier element. As a result, we
can associate a unique set of triangles, which we denote as {pe

k}
n
k=1, with each Bézier element Ωe. Then, for a given

triangle pe
k, we define ~ψe

k : Ω̂k → pe
k to be the unique, affine mapping such that:

~ψe
k((~xe)−1(V)) = V (2)

for every vertex V of the triangle pe
k. Next, let us define the corresponding parametric triangle p̂e

k as:

p̂e
k = (~ψe

k)−1(pe
k) (3)

Note that the set of parametric triangles { p̂e
k}

n
k=1 forms a non-overlapping cover of Ω̂quad, meaning:

Ω̂quad = ∪ p̂e
k (4)

∩ p̂e
k = ∅ (5)

Consequently, { p̂e
k}

n
k=1 forms a watertight triangulation of the reference quadrilateral. Now, let us introduce a few more

mappings. Namely, let ~φe
k : Ω̂k → p̂e

k be the unique mapping from the reference triangle Ω̂k to the parametric triangle
p̂e

k. As with ~ψe
k, this mapping is affine for triangles and bilinear for quadrilaterals. With ~φe

k defined, we can define the
composite mapping:

~xe
k := ~xe ◦ ~φe

k (6)

where ~xe
k is a bijective mapping between Ω̂k and the physical entity ~xe( p̂e

k) = Ωe
k ⊆ Ωe. The set of physical entities

{Ωe
k}

n
k=1 form a non-overlapping cover of Ωe, and thus our goal is to construct a Bernstein-Bézier representation

of each mapping ~xe
k : Ω̂k → Ωe

k. That is, for each entity Ωe
k, we would like to find a representation of the form

Ωe
k =

∑
i∈I

Ri(ξ)Pb,k
i , where {Pb,k

i }i∈I are the set of Bézier control points for Ωe
k, where I is some arbitrary index set

denoting the ordering of the points. Finally, we denote the matrix representation of a set of point by dropping the
index on the variable. That is, for a set of Bézier points, we write the matrix representation as:

Pb =



(
Pb

1

)T(
Pb

2

)T

.
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Pb

n
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Fig. 2: Visualization of Bézier projection of a Bézier element onto a collection of Bézier triangles.

Thus, it remains to provide a method to find the Bézier control points for the surface elements. Let us denote the
control points of the Bézier element from the CAD surface as {Pb,e

i }i∈I . Let us also denote the Bernstein basis functions
defined over the unit reference triangle as {Bk

i }i∈I and the basis functions defined over the unit reference quadrilateral
as {Bquad

i }i∈I . Then, following Bézier projection, we can then find the control points {Pb,k
i }i∈I by the relation:

Pb,k = M−1TPb,e (8)

where Mi j is defined as:

Mi j =

∫
Ω̂k

BiB jdΩ̂k (9)

and Ti j is defined as:

Ti j =

∫
Ω̂k

Bi(B
quad
j ◦ ~φe

k)dΩ̂k (10)

In the case when the Bézier element Ωe is rational, we proceed similarly, but enforce Equation (8) on the homogenous
control points, viz.:

P̃
b,k

= M−1TP̃
b,e

(11)

Once we have successfully reconstructed the surface, we simply replace the control points that lie on the surface of
the degree elevated linear mesh with the control points obtained through surface reconstruction. We likewise update
the corresponding control point weights with the weights obtained through surface reconstruction. Figure 3c shows
the mesh of the cylinder displayed in Figure 3b after surface replacement.

4. Conclusions and Future Work

We have presented an important initial step towards geometrically exact mesh generation. However, this is simply a
starting point, and there is much work yet to be done on this problem. First and foremost, we only consider tetrahedral
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(a) (b) (c)

Fig. 3: Surface reconstructed cylindrical mesh.

meshes here, but the method is easily extended to mixed element meshes consisting of Bézier tetrahedra, hexahedra,
pyramids and wedges. Additionally, our method places somewhat tight constraints on the types of CAD surfaces that
may be used. More work is needed towards loosening these restrictions. Finally, we do not consider algorithms for
automatically generating quality geometrically exact meshes. Undoubtably, there are lessons to be learned from the
rest of the higher-order meshing community that will help in achieving this goal.
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